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Abstract. The quantum spherical XY model with orthorhombic anisotropy is investigated. It is shown
that in contradiction with the results of reference [9], the long-range magnetic order is stabilized in two
dimensions. Both analytical and numerical results are presented. The incorrect results of the work [9] are
explained to be the result of improper choice of quantization axis.

PACS. 75.10.-b General theory and models of magnetic ordering

1 Introduction

Quantum spin models have been widely studied over the
last few years. Quantum XY model is still attracting inter-
est because it is used for description of liquid helium, high-
temperature superconductors and other systems. Since the
Mermin-Wagner theorem [1] states that there is an ab-
sence of long-range magnetic ordering in two-dimensional
(2D) systems, it is of fundamental interest and has been
extensively studied by different methods. The 2D spin
one-half XY model was investigated by renormalization
group method [2], Monte Carlo simulations [3], perturba-
tion theory [4], exact finite lattice calculations [5], varia-
tional methods [6], spin-wave theory [7,8].

Quantum 2D XY models with S > 1/2 were also
studied. Ma and Figueiredo (MF) [9] considered a spin-
one quantum ferromagnetic XY model with single-site
orthorhombic anisotropy in the form −D

2 [(Sx
i )2 − (Sy

i )2]
and with exchange Hamiltonian including interactions be-
tween nearest neighbor operators Sx

i and Sy
i . This form of

anisotropy is believed to describe the anisotropy in some
magnetic materials, MnCl2 · 4H2O for instance [10]. MF
used a spherical constraint

∑
i�(Sx

i )2 +(Sy
i )2� = N where

N is the number of lattice sites. In boson language this
constraint becomes a mean hard-core boson constraint [9].
These authors found that in spite of the presence of a
symmetry-breaking anisotropic term the long-range order
is stabilized only for d > 2 which is the lower critical di-
mensionality for this system.

These results seem to be curious. Fifteen years ago
Gomez-Santos and Joannopoulos [7] showed that while
considering quantum systems it is important to choose
a proper direction of quantization axis (i.e. z-axis). For

a e-mail: frid@tnu.crimea.ua

the spin one-half XY model they used the usual Holstein-
Primakoff spin-wave theory and obtained results in much
better agreement with numerical ones than results of spin
wave theory with incorrectly chosen quantization axis.

Our purpose is to show that the same takes place for
quantum spherical XY ferromagnet with anisotropy. Pre-
cisely, here the improper choice of quantization axis has
led to completely incorrect results obtained by MF.

We found that d = 2 is not the lower critical dimen-
sionality. In two dimensions there exists long-range ferro-
magnetic order with nonzero Curie temperature.

2 Self-consistent spin-wave theory for a 2D
ferromagnet

We begin with the Hamiltonian:

H = −1
2
J

∑
r,r+δ

(
Sx

r Sx
r+δ + Sz

r Sz
r+δ

)

− D

2

∑
r

[
(Sz

r )2 − (Sx
r )2

]
, (1)

where J is the strength of exchange interaction between
nearest neighbors. This Hamiltonian coincides with that
of MF (Eq. (1) in Ref. [9]) if we replace x → y, z → x.
Because of the symmetry-breaking term of single-site
anisotropy the long-range ferromagnetic order is expected
to be stabilized in the system under study. This means
that each spin of the lattice has the projection on the
quantization axis close to 1. The only quantum operators
with macroscopically measurable averages are Sz and S2.
This justifies the choice of Hamiltonian in the form (1).
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Instead of constraint
∑

i�(Sx
i )2 + (Sy

i )2� = N we use
other one: ∑

i

⌊
(Sx

i )2 + (Sz
i )2

⌋
= N. (2)

This is a quantum version of the original concept of
spherical model [11]. Introducing the Holstein-Primakoff
transformation [12] and performing the Fourier transfor-
mation of equations (1, 2) one obtains:

H =
∑

q

Aqa
+
q aq +

1
2

∑
q

Bq

(
a+

q a+
−q + aqa−q

)
, (3)

∑
q

[
a+

q aq − 1
2

(
a+

q a+
−q + aqa−q

)]
=

1
2
, (4)

where coefficients Aq and Bq are determined as follows:

Aq = J

(
1 − 1

2
γq

)
+

3
2
D + µ, Bq =

1
2
D − 1

2
Jγq − µ,

(5)

with γq = 1
2 (cos qx + cos qz) the structure factor. Here

in equations (3–5) we introduced chemical potential µ to
satisfy equation (4) on an average. This quantity should
be found self-consistently.

Using Bogoliubov transformation:

a+
q = uqα

+
q + vqαq, aq = uqαq + vqα

+
q , (6)

with

uq =

√
Aq + εq

2εq
, vq = − Bq

|Bq|

√
Aq − εq

2εq
,

εq =
√

(J(1 − γq) + 2D)(J + D + 2µ) (7)

the Hamiltonian (3) can be easily diagonalized:

H =
∑

q

εqα
+
q αq. (8)

Condition (5) in the 2D case can be rewritten as:

1
(2π)2

∫ π

−π

∫ π

−π

√
Aq − Bq

Aq + Bq

(
nq +

1
2

)
dqx dqz = 1,

nq = (exp(εq/T ) − 1)−1. (9)

The second term in the brackets of the first equation is a
part of quantum fluctuation corrections. Discarding this
term one has:

1
(2π)2

∫ π

−π

∫ π

−π

√
Aq − Bq

Aq + Bq
nq dqx dqz =

1
2
· (10)

The equation (10) can be solved analytically in the low-
temperature limit. One obtains:

µ ≈ T − J + D

2
· (11)

The mean magnetization is given by:

Mz =
3
2
− 1

(2π)2

∫ π

−π

∫ π

−π

Aq

εq

(
nq +

1
2

)
dqx dqz. (12)

Substituting equation (11) into (12) and neglecting the
second term in the brackets, for low temperatures we have:

Mz ≈ 1 − T

2πJ

(
1 +

D

T

)
ln

(
1 +

πJ

2D

)
· (13)

At zero temperature Mz is less than 1 due to the presence
of single-site anisotropy:

Mz(T = 0) ≈ 1 − D

2πJ
ln

(
1 +

πJ

2D

)
· (14)

Equation (14) is correct for small D � J . The critical
temperature of the phase transition from ferromagnetic
phase into paramagnetic one is given by:

TC ≈ 2πJMz(T = 0)

ln
(

1 +
πJ

2D

) · (15)

3 Numerical calculations

Equation (9) can be solved numerically without approxi-
mations like those made in the previous section. Then one
substitutes numerical solution µ(T, D) into equation (12)
and obtains dependence of the magnetization on temper-
ature or anisotropy.

We performed such numerical calculations in the range
of anisotropy values D ∈ [0.001J ; 0.1J ]. The results of the
calculation of chemical potential µ (below solid horizontal
line) and magnetization M (upper lines) for D = 0.001J
and D = 0.01J are shown at Figure 1. Dotted lines de-
pict mean magnetization for D = 0.001J (lower line) and
D = 0.01J (upper line) the one calculated with the use of
equation (13). One can see that the crude formula (13) is
just a linear approximation of mean magnetization. How-
ever, equation (11) is much more appropriate because from
Figure 1 one can see that chemical potential i) depends on
D weakly, ii) it is almost a linear function up to temper-
atures T ∝ J .

In Figure 2 we present the phase diagram anisotropy –
Curie temperature for a 2D ferromagnet. Note that the de-
pendence of the critical temperature on anisotropy differs
from that obtained by MF (however, their phase diagram
was calculated for a 3D system).

4 Conclusion

We have investigated the quantum spherical 2D XY spin-1
model with orthorhombic anisotropy. Previously this sys-
tem was considered by MF (Ref. [9]). We have shown that
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Fig. 1. Dependence of chemical potential µ (below solid hor-
izontal line) and magnetization M (upper lines) on reduced
temperature T/J of quantum spherical spin-one XY model
in two dimensions. Case D = 0.001J : solid circles – chemical
potential, solid line – mean magnetization. Case D = 0.01J :
dashed lines. Dotted lines: mean magnetization for D = 0.001J
(lower line) and D = 0.01J (upper line) calculated using ap-
proximation (13).

Fig. 2. Phase diagram anisotropy (log scale) – Curie temper-
ature for 2D quantum spherical spin-one XY ferromagnet.

the proper choice of quantization axis leads to completely
different results in comparison with those of MF. It was
found that the long-range order in the 2D system exists
up to the Curie temperature.

Note that the above-described method being applied
to the same model but with the spin coordinated system
chosen like in reference [9] gives for low temperatures the
gapless spectrum of spin waves, and therefore the diver-
gence of the integrals for d < 3 as in the work we crit-
icize [9]. These incorrect results are caused by improper
choice of quantization axis.

For XY spin-1/2 model such a mistake leads to sig-
nificant overestimation of various quantities (see Ref. [7],
Tabs. I, II, III). Therefore though there are few cases when
improper choice of quantization axis leads to mistake we
think it is dangerous to choose the x- or y- axis as the di-
rection of (possible) long-range ordering, i.e. as the quan-
tization axis, in quantum models. This question rises, for
example, for the paper [13] where MF considered a quan-
tum spherical XY model in a random field. They chose the
x-axis as a direction of random magnetic field. We cannot
state for certain that this paper is incorrect, however, simi-
lar calculations with the proper choice of quantization axis
will shed light on this problem.
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